α-B Crystallin Reverses High Diastolic Stiffness of Failing Human Cardiomyocytes.

نویسندگان

  • Constantijn Franssen
  • Jeroen Kole
  • René Musters
  • Nazha Hamdani
  • Walter J Paulus
چکیده

BACKGROUND Cardiomyocytes with a less distensible titin and interstitial collagen contribute to the high diastolic stiffness of failing myocardium. Their relative contributions and mechanisms underlying loss of titin distensibility were assessed in failing human hearts. METHODS AND RESULTS Left ventricular tissue was procured in patients with aortic stenosis (AS, n=9) and dilated cardiomyopathy (DCM, n=6). Explanted donor hearts (n=8) served as controls. Stretches were performed in myocardial strips, and an extraction protocol differentiated between passive tension (Fpassive) attributable to cardiomyocytes or to collagen. Fpassive-cardiomyocytes was higher in AS and DCM at shorter muscle lengths, whereas Fpassive-collagen was higher in AS at longer muscle lengths and in DCM at shorter and longer muscle lengths. Cardiomyocytes were stretched to investigate titin distensibility. Cardiomyocytes were incubated with alkaline phosphatase, subsequently reassessed after a period of prestretch and finally treated with the heat shock protein α-B crystallin. Alkaline phosphatase shifted the Fpassive-sarcomere length relation upward only in donor. Prestretch shifted the Fpassive-sarcomere length relation further upward in donor and upward in AS and DCM. α-B crystallin shifted the Fpassive-sarcomere length relation downward to baseline in donor and to lower than baseline in AS and DCM. In failing myocardium, confocal laser microscopy revealed α-B crystallin in subsarcolemmal aggresomes. CONCLUSIONS High cardiomyocyte stiffness contributed to stiffness of failing human myocardium because of reduced titin distensibility. The latter resulted from an absent stiffness-lowering effect of baseline phosphorylation and from titin aggregation. High cardiomyocyte stiffness was corrected by α-B crystallin probably through relief of titin aggregation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gigantic business: titin properties and function through thick and thin.

The giant protein titin forms a unique filament network in cardiomyocytes, which engages in both mechanical and signaling functions of the heart. TTN, which encodes titin, is also a major human disease gene. In this review, we cover the roles of cardiac titin in normal and failing hearts, with a special emphasis on the contribution of titin to diastolic stiffness. We provide an update on diseas...

متن کامل

Crucial role for Ca2(+)/calmodulin-dependent protein kinase-II in regulating diastolic stress of normal and failing hearts via titin phosphorylation.

RATIONALE Myocardial diastolic stiffness and cardiomyocyte passive force (F(passive)) depend in part on titin isoform composition and phosphorylation. Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) phosphorylates ion channels, Ca(2+)-handling proteins, and chromatin-modifying enzymes in the heart, but has not been known to target titin. OBJECTIVE To elucidate whether CaMKII phosphoryl...

متن کامل

Nitric oxide's role in the heart: control of beating or breathing?

Beneficial actions of nitric oxide (NO) in failing myocardium have frequently been overshadowed by poorly documented negative inotropic effects mainly derived from in vitro cardiac preparations. NO's beneficial actions include control of myocardial energetics and improvement of left ventricular (LV) diastolic distensibility. In isolated cardiomyocytes, administration of NO increases their diast...

متن کامل

S100A1 genetically targeted therapy reverses dysfunction of human failing cardiomyocytes.

OBJECTIVES This study investigated the hypothesis whether S100A1 gene therapy can improve pathological key features in human failing ventricular cardiomyocytes (HFCMs). BACKGROUND Depletion of the Ca²⁺-sensor protein S100A1 drives deterioration of cardiac performance toward heart failure (HF) in experimental animal models. Targeted repair of this molecular defect by cardiac-specific S100A1 ge...

متن کامل

Association of partially folded lens βB2-crystallins with the α-crystallin molecular chaperone

Age-related cataract is a result of crystallins, the predominant lens proteins, forming light-scattering aggregates. In the low protein turnover environment of the eye lens, the crystallins are susceptible to modifications that can reduce stability, increasing the probability of unfolding and aggregation events occurring. It is hypothesized that the α-crystallin molecular chaperone system recog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation. Heart failure

دوره 10 3  شماره 

صفحات  -

تاریخ انتشار 2017